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Introduction

Multitask learning [1] is a machine learning approach based on the idea that multiple related tasks can be
learned jointly, allowing a single model to leverage shared structure as an inductive bias to achieve strong
performance on each individual task. Models that learn multiple tasks simultaneously are theoretically
more generalizable and more computationally efficient [2].
While multitask learning has many potential benefits, there are some issues with it as well, chief of which
is that of conflicting gradients. In particular, when learning multiple tasks jointly, the model can encounter
situations where gradients for different tasks conflict with or dominate one another, which can lead to
sub-optimal solutions or convergence failure. This project aims to compare the performance of
various methods that have been proposed to combat the conflicting gradients problem.

Background: Proposed Solutions

This project investigates three methods of combating the conflicting gradients problem:

1. Gradient Normalization (Grad Norm) [3]. The GradNorm algorithm learns the weights wi for a loss
function L =

∑
wiLi , where Li are the individual loss functions for each task. Defining G(i)

W (t) as the
L2 norm of the gradient of wi(t)Li(t) at time t and GW (t) as the average gradient norm across all
tasks at time t, we aim to weight the gradient norm of each task as the average times the inverse
training rate of task i , which we denote ri(t). Then, the desired gradient norm for task i is
G(i)

W (t) := GW (t)[ri(t)]α, where α is a hyperparameter. Then, the GradNorm gradient descent
algorithm is implemented as an L1 loss function between the actual and target gradients:

Lgrad(t; wi(t)) :=
∑

i

∣∣∣G(i)
W (t) − GW (t)ri(t)α

∣∣∣
1

2. Projecting Conflicting Gradients (PCGrad) [4]. In PCGrad, if two gradients are conflicting, one is
projected onto the normal plane of the other to resolve the conflict. In particular, if two gradients g1
and g2 have negative cosine similarity, g1 is replaced with its projection onto the normal plane of g2,
which is gi := gi − gi ·gj

||gj ||2
gj . This is repeated for all tasks in a random order.

3. Conflict-Averse Gradient Descent (CAGrad) [5]. CAGrad works by finding an update vector for
the parameters θ at each step that decreases each individual task losses as well as the overall loss.
Given learning rate α, we consider the minimum decrease rate across losses using a first-order Taylor
approximation ([T ] denotes the set of different tasks):

R(θ, d) = max
i∈[T ]

{
1
α

(Li(θ − αd) − Li(θ))
}

≈ − min
i∈[T ]

⟨gi , d⟩.

Note that if R(θ, d) < 0, then all losses are decreases for some small α, so R(θ, d) is a measurement
of gradient conflict. On each step, CAGrad solves the optimization

max
d∈Rm

min
i∈[T ]

⟨gi , d⟩ s.t. ||d − g0|| ≤ c||g0||,

where c ∈ [0, 1) is a hyperparameter that controls convergence rate.

Figure 1. An overview of how gradients are modified in different methods, taken from [5]. Note that this project does not
consider multiple gradient descent algorithm (MGDA).

Tasks

We analyze how different multitask-trained models perform on two related NLP tasks: Paraphrase De-
tection (PARA), a binary classification problem indicating whether two sentences are paraphrases of one
another, and Semantic Textual Similarity (STS), a regression problem indicating the extent to which two
sentences are semantically similar. We use the Quora Question Pairs and SemEval STS datasets.

Model Architecture

Our models follow a general architecture: we build on top of a shared transformer encoder and use
two task-specific heads, one for the PARA task and one for the STS task. The PARA head consists of
two linear layers with ReLU activations, a hidden interaction layer that receives the concatenated hidden
representations. The binary classification logit is produced via a sigmoid. The STS head also consists
of two linear layers with ReLU activations. The 0-5 regression logit is produced via cosine similarity,
ReLU activation, then a multiplication by 5, primarily relying on finetuning the transformer to learn similar
sentence representations. We incorporate a generous dropout of 50% between each layer for regularization.
As our baselines, we train a pair of individually trained models, as well as a single vanilla multitask model
whose loss function is simply the average of the loss functions for the PARA and STS tasks.

Figure 2. Left: our overall model architecture. Right: transformer encoder architecture.

Methods

In training our models, we use mean squared error (MSE) loss for the STS regression task, and we use
binary cross entropy (BCE) loss for the PARA binary classification task. We perform a grid search in order
to optimize the hyperparameters for our models, including the batch size (512), the initial learning rate
(1e-2) and the number of epochs (30). We use an LR scheduler to decay our LR as the validation error
begins to stop increasing. We use the AdamW optimizer with a weight decay of 0.01 for regularization.
To evaluate performance, we use a standard accuracy metric. Since STS is a regression task, we define for
it a custom accuracy metric defined by the labels being within ±0.5 of the output logits. We then take
the average of the PARA and STS accuracy as a model’s overall accuracy, which we seek to maximize:

Acc = 1
2(AccSTS + AccPARA) = 1

2

(∑n
i=1 1[|ySTSi − ŷSTSi | ≤ 0.5]

n +
∑n

i=1 1[yPARAi = ŷPARAi ]
n

)
.

Results

PARA Acc. STS Acc. Average Acc.
Model Train Val Test Train Val Test Train Val Test

Random 0.500 0.500 0.500 0.200 0.200 0.200 0.350 0.350 0.350
Individual 0.883 0.781 0.779 0.652 0.518 0.522 0.768 0.650 0.651

Vanilla Multitask 0.845 0.730 0.722 0.540 0.392 0.391 0.693 0.561 0.557
PCGrad 0.885 0.782 0.782 0.650 0.520 0.514 0.768 0.651 0.648

GradNorm 0.933 0.799 0.794 0.671 0.529 0.531 0.802 0.664 0.663
CAGrad 0.913 0.789 0.784 0.669 0.524 0.524 0.791 0.657 0.654

(a) Non-Multitask Train Loss (b) Vanilla Multitask Train Loss (c) PCGrad Train Loss

(d) GradNorm Train Loss (e) CAGrad Train Loss

Discussion

The vanilla multitask model performs quite poorly on the STS task when compared to the individually
trained models; this is likely due to the fact that the gradients from the PARA model dominated the
gradients from the STS model. Also, the loss curves for both the PARA and STS tasks under the vanilla
multitask model plateau well before 30 epochs, indicating conflicting gradients preventing the model from
improving. This issue of conflicting gradients is somewhat noticeable in the last few epochs of the PCGrad
model, but the loss curves do not flatline in both the GradNorm and CAGrad models, showing that these
models perform the best.
If the topology of one task’s parameter space is more challenging than the others, it can lead to the
domination of gradients. For example, the gradients from a complex task can be more volatile, leading to
larger updates to the shared parameters. This dominance can occur because the optimization process may
spend more time navigating the challenging task’s parameter space, focusing on finding the best solutions
for that task, while potentially neglecting the other tasks. This likely manifests here due to a difference in
complexity between the STS and PARA tasks, where the former is more complex than the latter [4].
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